
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Automated Network Fault Management

by J.S. Baras, M. Ball, S. Gupta, P. Viswanathan, P. Shah

CSHCN T.R. 97-24
(ISR T.R. 97-64)

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Automated Network Fault Management

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Laboratory,2800 Powder Mill Road,Adelphi,MD,20783

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

AUTOMATED NETWORK FAULT MANAGEMENT �

J.S. Baras, M. Ball, S. Gupta, P. Viswanathan, and P. Shah

Center for Satellite and Hybrid Communication Networks

Institute for Systems Research

University of Maryland

College Park, Maryland 20742

ABSTRACT

Future military communication networks will have a

mixture of backbone terrestrial, satellite and wireless

terrestrial networks. The speeds of these networks vary

and they are very heterogeneous. As networks become

faster, it is not enough to do reactive fault manage-

ment. Our approach combines proactive and reactive

fault management . Proactive fault management is im-

plemented by dynamic and adaptive routing. Reactive

fault management is implemented by a combination of

a neural network and an expert system. The system has

been developed for the X.25 protocol. Several fault sce-

narios were modeled and included in the study: reduced

switch capacity, increased packet generation rate of a

certain application, disabled switch in the X.25 cloud,

disabled links. We also modeled occurrence of alarms in-

cluding severity of the problem, location of the event and

a threshold. To detect and identify faults we use both

numerical data associated with the performance objects

(attributes) in the MIB as well as SNMP traps (alarms).

Simulation experiments have been performed in order to

understand the convergence of the algorithms, the train-

ing of the neural networks involved and the G2/NeurOn-

Line software environment and MIB design.

INTRODUCTION

Fault management [14, 15, 16, 17] includes detect-

ing, isolating, and repairing problems in the network,

tracing faults, given many alarms in the system, using

error logs and tracing errors through the log reports [1].

One of the problems faced by network control centers is

that of handling extremely large volumes of data deal-

ing with the performance of the networks. The data

�This work was supported in part by the U.S. Department of

the Army, Army Research Laboratory under Cooperative Agree-

ment DAAL01-96-2-0002, Federated Laboratory ATIRP Consor-

tium, in part by the Center for Satellite and Hybrid Communi-

cation Networks under NASA cooperative agreement NCC3-528,

and in part by a grant from Space Systems Loral.

volume makes the task of �nding the problem a very

time-consuming process. However, unlike some of the

other network management functions listed in the ISO

model, in fault management, speed is very crucial and

recovery from a problem has to occur quickly.

Several e�orts have taken place to tackle the fault

management problem, some of which are described in

[4, 5, 6, 7, 8, 9, 10]. Although several interesting issues

have been addressed in these papers, such as trouble

ticketing and alarm correlation, most of the work has

been done through the use of expert systems alone [12,

13] without the use of neural networks. Furthermore,

in these sources, we have not seen the use of SNMP

statistics for the fault management problem.

The expert system approach to diagnosis is intuitively

attractive, as symptoms can be linked to causes explic-

itly, in a rule-based knowledge representation scheme.

The limitations of rule-based expert systems are re-

vealed when they are confronted with novel fault sit-

uations for which no speci�c rules exist. Novel faults,

for which the neural network has not been trained, or for

which no output neuron has been assigned, are general-

ized and matched to the closest fault scenario for which

the network has been trained. Each approach contains

its own strengths and weaknesses. In order to take ad-

vantage of the strengths of each technique, as well as

avoiding the weaknesses of either we used an integrated

neural network/expert system diagnostic strategy [2, 3].

Dynamic fault management is a critical element of

network management. It is even more di�cult in mil-

itary networks because in addition to hard faults and

soft faults (caused by performance degradation) we also

have faults caused by the varying situation and scenario

of the battle. Future military communication networks

will have a mixture of backbone terrestrial, satellite and

wireless terrestrial networks. The speeds of these net-

works varies and they are very heterogeneous. As net-

works become faster, it is not enough to do reactive fault

management. Our approach combines proactive and re-

1

active fault management . Proactive fault management

is implemented by dynamic and adaptive routing. Reac-

tive fault management is implemented by a combination

of a neural network and an expert system.

In the work reported here we concentrate on fault

management at the application level. Each applica-

tion generates packets using a Markov Modulated Poi-

son Process (MMPP). We assume two packet priorities,

and non-preemptive queue management. The system

has been developed for the X.25 protocol. The dynamic

routing is based on dynamically adjustable link costs on

the basis of utilization to induce correction via rerout-

ing based on minimum cost. In our model the following

performance data are collected by the network: block-

ing of packets, queue sizes, packets throughput from

all applications, utilization on links connecting subnet-

works, end-to-end delays experienced by packets. Sev-

eral fault scenarios were modeled and included in the

study: reduced switch capacity, increased packet gener-

ation rate of a certain application, disabled switch in the

X.25 cloud, disabled links. These scenario are used to

train the neural network, so as to predictively recognize

the genesis of faults.

We also modeled occurrence of alarms including

severity of the problem, location of the event and a

threshold. Decisions of whether or not to send an alarm

are determined by examining data over a user-speci�ed

time window. We implemented components of SNMP

monitoring based on RFC 1382, including agents and

traps [18, 19, 20]. We have completed a small proto-

type demonstration system which consists of: an OP-

NET simulation of a network and its faults, a MIB,

and a tightly coupled Neural Network and Expert Sys-

tem. We used neural networks based on radial basis

functions. To detect and identify faults we use both

numerical data associated with the performance objects

(attributes) in the MIB as well as SNMP traps (alarms).

Performance data from the X.25 network is supplied as

input to the neural network and data concerning SNMP

statistics, SNMP traps, and alarms are supplied as in-

put to the expert system. We are using both neural

networks and expert systems since all faults cannot be

explained through the use of just alarms or SNMP traps.

An overview of the system is shown in Figure 1.

X.25
network

Expert
System

Neural
Network

Alarms and SNMP information
(Traps and X.25 Statistics)

Relational
Database

Performance Data

Output from the
neural network
(fault type)

Fault location
and possible
cause

Network
statistics

Figure 1: The overall system

NETWORK TOPOLOGY AND SIMULATION

The network that we have simulated in OPNET is

based on the X.25 protocol. Each user corresponds to a

Data Terminal Equipment (DTE), connected to a Data

Communications Equipment (DCE). Thus, having 10

users implies having 10 DTE/DCE pairs, where each

DTE can have several logical channels. Each DTE can

handle 2 applications, thus making it possible to run up

to 20 applications at a time. There are both permanent

virtual circuits (PVCs) and virtual calls. Four PVCs

have been prede�ned. The PVCs are DTE to DTE con-

nection. In addition to the DTEs and DCEs pertaining

to the X.25 model, there is also a SNMP manager.

In our simulation, the X.25 cloud consists of 15 nodes

used to transmit the packets in a store-and-forward

manner. These 15 nodes are grouped into 3 subnet-

works, where each subnetwork consists of 5 nodes. The

division of the X.25 cloud into subnetworks should be

done so that a single neural network can be appropri-

ately assigned to monitor each subnetwork. A typical

subnetwork is shown in Figure 2.

We have incorporated the following assumptions in

the simulation model. Each application generates

packets using a Markov Modulated Poisson Process

(MMPP). The source sends packets whose sizes are

�xed. The MMPP source is used in order to simulate a

bursty tra�c model for data. The amount of data trans-

fer is established by a random number generator. Each

packet has a priority of 0 (low) or 1 (high), depending

on the user generating the packet. The input and out-

put queues have �nite capacity and �xed service rate

that are user-speci�ed. The rate of the input queue cor-

responds to the switch rate while the rate of the output

queue corresponds to the link rate. There is a collec-

tion of source/destination DTE pairs. The association

between DTEs is many-to-many, as in electronic mail,

2

-121.125 -118.75 -117.5625 -115.1875 -112.812533.25

34.4375

35.625

36.8125

38

39.1875

40.375

Los Angeles

Phoenix

CA

AZ

NV

UT

node1

node5

node4

node3

node2

Figure 2: The overall system.

for example. We used queuing with priorities but non-

preemptive. All the packets (arriving from the various

nodes via the input links) are inserted into one queue.

We performed simulations with widely di�erent traf-

�c patterns. When running a simulation for T seconds,

we are varying the tra�c in such a way that there are

periods when tra�c is high and other periods when traf-

�c is light. The performance data being collected con-

sist of statistics about the following parameters: Packet

drop rates, queue sizes, packet throughput from all the

applications, link utilizations, end-to-end delays experi-

enced by packets. In addition, in the simulation we also

have SNMP variables monitored and have implemented

traps.

A MINIMUM COST ROUTING

ALGORITHM

When a packet is created by an application running

on a DTE, it is divided into a number of packets of

�xed length (the length can be chosen by the network

designer). In our simulation, the length of each packet

was 128 bytes, the default value as speci�ed in the X.25

Recommendations. A source to destination pair is then

assigned to the message. Based on this pair, a route is

selected from the routing table and is assigned to the

message based on a minimum cost routing algorithm.

We used minimum cost routing based on dynamically

changing link costs, in order to implement some proac-

tive fault management. At the start of the simulation,

all the links have zero cost assigned to them. As the

simulation progresses, this cost is updated periodically

by relating the cost of the link to the utilization on the

link using the following cost function:

ci = (1� �)ci�1 + �
1

1� �i

where ci is the cost of the link at the ith time instant

(when the data is sampled), ci�1 is the cost of the link

at the previous time instant, � is a weighting factor be-

tween 0 and 1 (inclusive), and �i is the utilization on

the link at the ith time instant. The weighting factor,

�, is used in order to take into account the dynamics

of the network. The choice of � is left to the network

designer. In our simulations, we chose � to be a number

greater than 0.5, thus assigning more weight to the cur-

rent value of the utilization. When the utilization of a

link increases, the cost of the link increases also (though

not in a linear fashion). As a result, the tra�c will be

re-routed through links that are relatively underutilized.

In addition to depending on the source and destina-

tion addresses, this routing algorithm also depends on

the maximum number of hops allowed. This parameter

is speci�ed by the user.

FAULT SCENARIOS AND DATA

The modeling of faults is done as follows. We de�ne

a normal state in the network, where normal refers

to levels of tra�c
ow that are not unusually low or

high, e.g link utilization between 0.20 and 0.70. Then,

a set of fault scenarios are modeled and used to train the

neural network system. By training the neural network

to understand a normal state of operation, it would then

be able to recognize abnormal states also. The fault

scenarios that we have simulated are the following:

1. Reducing switch capacity, i.e. dropping the service

rate. This would a�ect dropping of packets and response

times for applications.

2. Increase the (normal) packet generation rate of a

certain application (e.g. 3 times the original amount of

tra�c).

3. Disabling of certain switches in the X.25 cloud. This

means that the switch is not functional and cannot be

used as a hop for a call. Such a fault would cause re-

routing of calls via other (working) switches.

4. Disabling certain links.

Alarms

A method for simulating the occurrence of alarms is

also incorporated in the simulation. The alarm contains

information regarding the severity of the problem, the

location of the event (i.e. which node in which subnet-

work), and a threshold. The severity levels and alarm

3

codes are: critical (5), major (4), minor (3), warning (2),

informational (1), cleared (0). The decision of whether

or not to send an alarm is determined by examining the

sampled data over a user-speci�ed time window.

SNMP Monitoring

In much of the literature that was reviewed [4, 5, 6,

7, 8], there had been little mention regarding the use of

SNMP variables to perform fault management. In our

approach, we are logging statistics pertaining to SNMP

variables based on the RFC 1382, (SNMP MIB Exten-

sion for the X.25 Packet Layer). A list of variables was

extracted from RFC 1382 and were logged during the

simulation. The subset of variables were chosen from

the RFC because they are helpful in identifying faults

that could occur in the X.25 simulation. The variables

are logged on a per DTE basis and not on a per logical

channel basis. This is implemented by assigning IDs to

each DTE.

SNMP Traps

In addition, we also have the facility for agents to

send traps to a manager when something goes wrong.

Here, an agent refers to a node in the X.25 cloud. This

manager is designed to manage the switches in the X.25

cloud. It does not receive traps from the DTEs or DCEs

in the network. According to RFC 1215 (\A Convention

for De�ning Traps for use with the SNMP), there are six

basic types of traps, together with a seventh (enterprise-

speci�c) trap. These are : coldStart(0), warmStart(1),

linkDown(2), linkUp(3), authenticationFailure(4), egp-

NeighborLoss(5), enterpriseSpeci�c(6). In our simula-

tion, we have implemented traps 2, 3, and 6 above.

EXPERT SYSTEMS AND NEURAL

NETWORKS

OPNET/NEURONLINE Interface

The data from the X.25 simulation in OPNET is gath-

ered in a
at �le and stored in an ORACLE database.

The data is then read by G2 and Neuronline, where the

former is the expert system and the latter is the neural

network component. After careful review of the alter-

natives we chose radial basis function networks (RBFN)

as the neural network architecture for conducting clas-

si�cation. In implementing our system, we used a com-

bination of both neural networks and expert systems.

Radial Basis Function Networks

Recently, researchers have been using radial basis

function networks for handling classi�cation problems

[3, 11]. RBFNs are three-layered networks, with an in-

put layer, a hidden layer, and an output layer. Unlike

backpropagation networks, RBFNs use Gaussian trans-

fer functions, one per hidden node. The hidden nodes

have spherical (or elliptical) regions of signi�cant acti-

vation. The �nite bounding of the activation regions en-

ables RBFNs to detect novel cases. Another advantage

of RBFNs is that they require less (typically an order of

magnitude) time for training compared to backpropa-

gation networks. However, they have a slower run-time

execution [11].

The training of RBFNs is done in three stages. In the

�rst stage, the center of each of the radial basis function

units is determined using the k-means clustering algo-

rithm. This is an unsupervised technique that places

unit centers centrally among clusters of points. In the

second stage, the unit widths are determined using the

nearest neighbor technique, which ensures the smooth-

ness and continuity of the �tted function. In the �nal

stage, the weights of the second layer of connections are

found using linear regression.

Network Monitoring

One of the most crucial elements in performing fault

management of networks is speed for fault detection,

fault location, and identi�cation of the type of fault.

For managing the X.25 network, we used a hybrid

architecture of neural networks and expert systems to

perform the fault management functions. Speci�cally,

we used RBFNs to analyze the performance data be-

ing generated by OPNET. There is one RBFN for each

subnetwork. The size and structure of each subnetwork

need not be the same and it is an arbitrary design issue

that is left to the network designer. The possible out-

puts of the neural networks are the di�erent classes of

faults that could occur in the X.25 subnetworks. When

a fault occurs within a certain subnetwork, the RBFN

assigned to monitor that subnetwork will alert the net-

work operator that a fault of a speci�c class (e.g. dis-

abled node) has occured. However, this will not inform

the operator of the location of the fault. Thus, in the

example above, the operator would know that a node in

a speci�c subnetwork was disabled, but he/she would

not know which node was disabled. Then, based on the

outcome of the neural network, appropriate action is

taken by the expert system. The expert system uses in-

formation about alarms and SNMP traps, together with

the SNMP variables which we chose from RFC 1382, to

make its conclusions regarding the possible location and

cause of the fault. We implemented special rules to han-

dle disabled nodes, others to handle failed links, and so

on.

4

FIRST LEVEL OF FAULT DETECTION AND

DIAGNOSIS: NEURAL NETWORKS

We used one radial basis function network for each

subnetwork in the X.25 cloud. In the training phase

for a speci�c neural network we used the performance

data obtained directly from the network. This data is

then scaled using a data rescaler, which was con�gured

to use zero mean, unit variance scaling on the input

and no scaling on the output. The scaled data is then

used by the trainer to train the RBFN. A �t tester is

also available. The criterion chosen for the �t tester is

fraction misclassi�ed. Thus, the output of the �t tester

is a number between 0 and 1, re
ecting how accurately

data samples are classi�ed.

The neural network has spherical nodes for its hidden

layer. The number of hidden nodes per class was chosen

through trial and error, after several training sessions,

until the desired performance is achieved. During our

experiments, it was found that as the number of hidden

nodes increased, the �t tester error decreased (though

not linearly), thus implying that there was a better �t

of the data by the neural network. However, a higher

number of hidden nodes also meant a longer training

period. The training of the neural networks is a�ected

by the following factors: The quality of the input data

and how well it re
ects the conditions of the X.25 net-

work; The number of hidden nodes in the hidden layer

of the RBFN; The number of input variables that are

supplied to the neural network (we supplied the uti-

lization levels on all the links, the queue sizes, and the

measured packet throughput at each node); The dis-

criminating characteristics of data for faults occuring

simultaneously.

Since a neural network observes patterns and makes

inferences based on those patterns, similar patterns for

di�erent fault classes would lead to misclassi�cations.

In several experiments, when one node in a subnetwork

was blocked, the average queue size of other nodes in

the subnetwork increased drastically, beginning at the

time of the node blockage. This occurs as a result of

re-routing of the X.25 calls. In such cases, there are

certain distinct patterns that help the neural network

to identify the di�erent cases. However, there are other

instances when it is more di�cult. For example, a link

failure and a node failure both lead to re-routing of traf-

�c. If the samples of training data are small, it is very

di�cult for the neural network to distinguish between a

node failure and a link failure, simply by analyzing the

re-routing that occurs. Thus, more data is needed to

Neural Network Training: 5 Classes

Total % Error % Error % Error % Error % Error
Hidden Normal Disabled Excess Degraded Disabled

Nodes State Node Thrput Bu�er Link

175 0.13 0.16 0.14 0.19 0.21

200 0.10 0.13 0.13 0.17 0.18

210 0.08 0.11 0.12 0.16 0.15

230 0.07 0.10 0.09 0.14 0.11

Table 1: Neural network training chart for the third

test.

distinguish between the re-routing that occurs in these

two cases in order to have a small percentage of mis-

classi�cation; and this was veri�ed by our experiments.

Since there is no �xed method to train neural net-

works, we arbitrarily selected a few di�erent test cases

to develop a better understanding of how the neural net-

works were trained. The data obtained from the simu-

lations in OPNET was divided so that two-thirds was

used for training and one-third for testing. In the �rst

test, we considered 3 classes (normal, disabled node, and

excess user tra�c). We used 180 samples of data for the

normal class and 90 samples for each of the other two

classes. In the second test, we repeated the �rst test

but, changed the number of samples of training data

to 180 samples per class and retrained the RBFN net-

works. Comparison of the results indicates that with

more data points per class, the total number of hidden

nodes decreases for a certain range of error values for

the �t tester.

In the third test, we considered all �ve classes of faults

and trained the RBFNs with di�erent sample sizes. We

�rst trained the RBFN with 150 samples for the normal

class and 80 samples for each of the other fault classes,

giving a total of 470 points in the training set. The

results for this case are shown in Table 1. By looking

at the last two columns in each row, it is observed that

the percentage error is higher for those two fault classes.

This provided the motivation for the next test.

In the fourth and �nal test, we again considered all

�ve classes of faults and trained the RBFNs with dif-

ferent sample sizes. We trained the RBFN with 180

samples each for the normal, disabled node, and ex-

cess user tra�c classes. For the remaining two faults

classes, we used 320 samples for each class giving a to-

tal of 1180 points in the training set. The reason for this

is because these two cases do not manifest themselves in

an obvious manner through the performance data from

5

Neural Network Training: 5 Classes

Total % Error % Error % Error % Error % Error
Hidden Normal Disabled Excess Degraded Disabled

Nodes State Node Thrput Bu�er Link

60 0.08 0.07 0.06 0.07 0.08

80 0.06 0.05 0.04 0.04 0.07

100 0.05 0.03 0.03 0.04 0.05

125 0.03 0.04 0.03 0.05 0.04

Table 2: Neural network training chart for the fourth

test.

the network. When the training for these two cases was

performed with 180 samples per class, the percentage of

misclassi�cation was very high (approximately 0.40 for

each fault class). On the other hand, when we tried us-

ing 500 samples for each of these two classes, the RBFN

was overtrained and all data points (from the testing

data) were classi�ed either as degraded bu�er or link

failed. Thus, we had to use an intermediate number of

points between these two extreme cases of training and

the results for this case are shown in Table 2.

After analyzing the behavior of the network under

fault conditions in several experiments, it appears that

the network topology in
uences the neural networks

ability to discriminate faults. Since all occurrences of

a particular fault class are not identical, several di�er-

ent cases need to be presented to the RBFN for the

same fault class. Obviously, this corresponds to longer

training sessions for the neural networks. Similar obser-

vations were also recorded for the other fault classes.

The output of the neural network is used by a classi-

�er to inform the network operator of the current sta-

tus of the network; the neural network outputs a fault

code. If a certain fault code is observed several times

(e.g. K times out of M samples), then the expert sys-

tem is activated to determine further information about

the location and cause of the fault, as described in the

next section.

SECOND LEVEL OF FAULT DETECTION

AND DIAGNOSIS: EXPERT SYSTEMS

The neural network for each subnetwork analyzes the

incoming data and if a state other than a normal one

appears to be present, then the expert system makes

queries to an ORACLE database to determine further

information about the observed fault in the network.

Di�erent fault conditions induce di�erent queries, as de-

scribed below.

Single Faults

To detect a node failure at node i, the algorithm �rst

searches for a SNMP trap. Reception of a trap would

solve the problem. If, due to some problem in the net-

work, the trap was not received by the SNMP manager

(a feature that exists in our simulation), then we ex-

ecute a query from the expert system looking for the

following condition:
X

8js:t:9link(i;j)

�ij < �

In our implementation, we set � = 0:01.

To con�rm the hypothesis, we examine:

1. x25StatCallTimeouts counter at the DTEs that are

the \source" part of the source/destination pairs for the

DTEs connected to node i.

2. x25StatOutCallFailures, x25StatOutCallAttempts

counters at the source DTE.

To detect a user connected to node i that is submitting

excess tra�c to the network, we look for the following

condition: X

8js:t:9link(i;j)

�ij > �

To con�rm the hypothesis, we check:

1. x25StatOutDataPackets at the DTEs connected to

node i.

2. Measured packet throughput at node i.

3. x25StatInDataPackets at the destination DTE, i.e.

node i, obtained by checking the source/destination

pairs in the case of PVCs.

4. x25StatInCalls at the destination DTE, obtained

by checking the source/destination pairs in the case of

PVCs.

To detect a degraded switch, the algorithm �rst searches

for a SNMP trap. Reception of a trap would solve the

problem. To con�rm the hypothesis, we check the fol-

lowing:

1. Alarms corresponding to high queue sizes and/or

blocking of packets.

2. High end{to{end delays experienced by packets.

To detect a link failure on link (i; j), the algorithm �rst

searches for a SNMP trap. Reception of a trap would

solve the problem. If the SNMP manager does not re-

ceive a trap, then we execute a query from the expert

system looking for the following condition: �nd i and j

such that

�ij = 0 and �ji = 0:

In addition, we check the x25StatRestartTimeouts and

x25StatResetTimeouts counters.

6

Multiple Faults

In the case of multiple faults, we simply need to exam-

ine the outputs of the RBFN neural networks and deter-

mine which ones do not correspond to normal tra�c. By

doing so, we eliminate a large number of nodes in the

X.25 network and we can focus on those subnetworks

that are experiencing problems. In the work to date,

we did not consider multiple faults occurring simultane-

ously within the same subnetwork since the probability

of occurrence of such an event is much smaller than the

probability of occurrence of multiple faults within dif-

ferent subnetworks. In the event of faults occurring in

one subnetwork, with the resulting e�ects propagating

to another subnetwork, the RBFNs of both subnetworks

would indicate problem situations and the results of the

queries from both subnetworks would have to be exam-

ined.

These strategies were validated with the simulation

results from OPNET. One should note that the rules

which were constructed for the expert system are driven

by the X.25 network architecture. It is possible that dif-

ferent architectures would probably use the above rules

with some modi�cations.

REFERENCES

[1] Kornel Terplan. Communication Networks Man-

agement. Prentice Hall, 2nd. edition, 1992.

[2] W.R. Becraft and P.L. Lee. An integrated neu-

ral network/expert system approach for fault diag-

nosis. Computers Chem. Engng, 17(10):1001-1014,

1993.

[3] James Hendler and Leonard Dickens. Radial ba-

sis function networks for classying process faults.

AISB Conference, April 1991.

[4] Joseph Pasquale. Using expert systems to manage

distributed computer systems. IEEE Network Mag-

azine, pages 22-28, September 1988.

[5] Sameh Rabie, Andrew Rau-Chaplin, and Taro

Shibahara. DAD: A real-time expert system for

monitoring of data packet networks. IEEE Network

Magazine, pages 29-34, September 1988.

[6] Wei-Dong Zhan, Suchai Thanawastien, and Lois

M.K. Delcambre. SimNetMan: An expert sys-

tem for designing rule-based network management

systems. IEEE Network Magazine, pages 35-42,

September 1988.

[7] Mark T. Sutter and Paul E. Zeldin. Design-

ing expert systems for real-time diagnosis of

self-correcting networks. IEEE Network Magazine,

pages 43-51, September 1988.

[8] Robert N. Cronk, Paul H. Callahan, and Lawrence

Bernstein. Rule-based expert systems for network

management and operations: An introduction.

IEEE Network Magazine, pages 7-21, September

1988.

[9] Gabriel Jakobson, Robert Weihmayer, and Mark

Weissman. A dedicated expert system shell

for telecommunication network alarm correlation.

IEEE Network Magazine, pages 277-288, Septem-

ber 1993.

[10] A. Finkel, K.C. Houck, S.B. Calo, and A.T.

Bouloutas. An alarm correlation system for hetero-

geneous networks. IEEE Network Magazine, pages

289-309, September 1993.

[11] James A. Leonard and Mark A. Kramer. Radial ba-

sis function networks for classifying process faults.

IEEE Control Systems, pages 31-38, April 1991.

[12] Larry L. Ball. Network Management with Smart

Systems. McGraw-Hill, 1994.

[13] James Malcolm and Trish Wooding. IKBS in

network management. Computer Communications,

13(9):542-546, November 1990.

[14] Marshall T. Rose. How to manage your network us-

ing SNMP: the networking management practicum.

PTR Prentice Hall, 1995.

[15] William Stallings. Network management. IEEE

Computer Society Press, 1993.

[16] William Stallings. SNMP, SNMPv2, and CMIP:

the practical guide to network-management stan-

dards, Addison-Wesley Pub. Co., 1993.

[17] John Mueller. The hands-on guide to network

management. Windcrest/McGraw-Hill, 1st. edi-

tion, 1993.

[18] Rfc 1382: SNMP MIB extension for the X.25

packet layer.

[19] Rfc 1215: A convention for de�ning traps for use

with the SNMP.

[20] X.25 recommendations.

7

